Close Wed: HW_5A,5B,5C (6.5,7.1,7.2)
$$\int_{0}^{1} x^{2}e^{x/3}dx$$
Office Hours: 2:00-3:30 in COM B-006 2. $\int_{0}^{1} x^{2}e^{x/3}dx$

7.1 Integration by Parts (continued)

Summary: $\int u \, dv = uv - \int v \, du$

- 1. Pick u = ??. The rest is dv.
- 2. Compute du and v.

Entry Task: Evaluate

$$1.\int \frac{\ln(x)}{\sqrt{x}} dx$$

Integration by parts is good for:

Products: xe^x , $x^2 \cos(3x)$, $x \sin(5x)$

Logs:
$$\ln(x)$$
, $x^{10} \ln(x)$, $\frac{\ln(x)}{x^3}$, ...

Inv. Tri:
$$\sin^{-1}(x)$$
, x $\tan^{-1}(x)$,...

Products: $e^x \sin(x)$, $e^x \cos(x)$

Example:

$$\int \tan^{-1}(x)dx = \int \arctan(x)dx$$

Example: (Never ending integration by parts and how to end it):

$$\int e^x \cos(x) \, dx$$

7.2 Trigonometric Integral Methods *Goal*: A procedure to integrate *any* combination of trig functions. *Motivating examples*: *These are* substitution problems, what is u? $\int \sin^3(x) (1 - \sin^2(x)) \cos(x) dx$

$$\int (1 - \cos^2(x)) \cos^5(x) \sin(x) dx$$

$$\int \tan^5(x) \left(1 + \tan^2(x)\right) \sec^2(x) dx$$

$$\int \sec^6(x)\sec(x)\tan(x)\,dx$$

7.2 idea: Use trig identities to turn almost all trig problems into one of these situations!

Essential Tools

$$\tan(x) = \frac{\sin(x)}{\cos(x)}, \cot(x) = \frac{\cos(x)}{\sin(x)},$$
$$\sec(x) = \frac{1}{\cos(x)}, \csc(x) = \frac{1}{\sin(x)}.$$

See my online postings (or the Appendix of your book) for a more general discussion and proofs of trig identities.

$$\sin^2(x) + \cos^2(x) = 1$$

 $\tan^2(x) + 1 = \sec^2(x)$

$$\cos^{2}(x) = \frac{1}{2}(1 + \cos(2x))$$
$$\sin^{2}(x) = \frac{1}{2}(1 - \cos(2x))$$
$$\sin(x)\cos(x) = \frac{1}{2}\sin(2x)$$

Case 1 (cos(x) or sin(x) has odd power)

$$i) \int \sin^2(x) \cos^3(x) \, dx$$

$$ii) \int \sin^3(x) dx$$

Case 2 (both sin(x), cos(x) even powers)

$$i) \int \cos^2(x) \, dx$$

$$ii) \int \sin^4(x) dx$$

Case 3 (even power on sec(x))

$$\int \tan^2(x) \sec^4(x) \, dx$$

Case 4 (odd power on tan(x), and at least one sec(x))

$$\int \tan^3(x) \sec^5(x) \, dx$$

Notes: And if you've tried all methods and are stuck, here are things to try:

- 1. Rewrite in terms of sin(x) and cos(x).
- 2. Rewrite in terms of sec(x) and tan(x).
- 3. Try using trig identities.

There are still a few "holes".

Particularly, odd power on sec(x).

For these you can quote (proof in the book):

$$\int \tan(x) dx = \ln|\sec(x)| + C$$

$$\int \sec(x) dx = \ln|\sec(x) + \tan(x)| + C$$

$$\int \sec^3(x) dx = \frac{1}{2} \sec(x) \tan(x) + \frac{1}{2} \ln|\sec(x) + \tan(x)| + C$$

$$\int \sin^3(\mathbf{x})\cos^4(\mathbf{x})d\mathbf{x}$$

$$\int \sin^5(\mathbf{x})\cos^3(\mathbf{x})d\mathbf{x}$$

$$\int \cos^4(\mathbf{x}) d\mathbf{x}$$

$$\int \tan^5(\mathbf{x}) \sec^4(\mathbf{x}) d\mathbf{x}$$

$$\int \tan^5(\mathbf{x}) \sec(\mathbf{x}) d\mathbf{x}$$